Fast kernel entropy estimation and optimization
نویسندگان
چکیده
Differential entropy is a quantity used in many signal processing problems. Often we need to calculate not only the entropy itself, but also its gradient with respect to various variables, for efficient optimization, sensitivity analysis, etc. Entropy estimation can be based on an estimate of the probability density function, which is computationally costly if done naively. Some prior algorithms use computationally efficient non-parametric entropy estimators. However, differentiation of the previously proposed estimators is difficult and may even be undefined. To counter these obstacles, we consider non-parametric kernel entropy estimation that is differentiable. We present two different accelerated kernel algorithms. The first accelerates the entropy gradient calculation based on a back propagation principle. It allows calculating the differential entropy gradient in the same complexity as that of calculating the entropy itself. The second algorithm accelerates the estimation of both entropy and its gradient by using fast convolution over a uniform grid. As an example, we apply both algorithms to blind source separation. r 2005 Elsevier B.V. All rights reserved.
منابع مشابه
Harmonic Source Localization Approach Based on Fast Kernel Entropy Optimization ICA and Minimum Conditional Entropy
Abstract: Based on the fast kernel entropy optimization independent component analysis and the minimum conditional entropy, this paper proposes a harmonic source localization method which aims at accurately estimating harmonic currents and identifying harmonic sources. The injected harmonic currents are estimated by the fast kernel entropy optimization independent component analysis (FKEO-ICA) ...
متن کاملISAR Image Improvement Using STFT Kernel Width Optimization Based On Minimum Entropy Criterion
Nowadays, Radar systems have many applications and radar imaging is one of the most important of these applications. Inverse Synthetic Aperture Radar (ISAR) is used to form an image from moving targets. Conventional methods use Fourier transform to retrieve Doppler information. However, because of maneuvering of the target, the Doppler spectrum becomes time-varying and the image is blurred. Joi...
متن کاملFast optimization of Multithreshold Entropy Linear Classifier
Multithreshold Entropy Linear Classifier (MELC) is a density based model which searches for a linear projection maximizing the CauchySchwarz Divergence of dataset kernel density estimation. Despite its good empirical results, one of its drawbacks is the optimization speed. In this paper we analyze how one can speed it up through solving an approximate problem. We analyze two methods, both simil...
متن کاملEnsemble weighted kernel estimators for multivariate entropy estimation
The problem of estimation of entropy functionals of probability densities has received much attention in the information theory, machine learning and statistics communities. Kernel density plug-in estimators are simple, easy to implement and widely used for estimation of entropy. However, for large feature dimension d, kernel plug-in estimators suffer from the curse of dimensionality: the MSE r...
متن کاملICA Using Kernel Entropy Estimation with NlogN Complexity
Mutual information (MI) is a common criterion in independent component analysis (ICA) optimization. MI is derived from probability density functions (PDF). There are scenarios in which assuming a parametric form for the PDF leads to poor performance. Therefore, the need arises for non-parametric PDF and MI estimation. Existing nonparametric algorithms suffer from high complexity, particularly i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing
دوره 85 شماره
صفحات -
تاریخ انتشار 2005